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ABSTRACT

The literature on laser-solid matter interaction is

surveyed and the important regimes of this process are deli-

neated. This information is used to discuss the possibility

of a laser induced ablation thruster. It is concluded that

such a thruster may be feasible if a sufficiently high intensity,

high frequency laser beam is available and that further study of

,.. interaction is needed.
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i I. INTRODUCTION
_ . The major purpose of this report is to determine (1) if it is at all reasonable

to use laser induced ablation as a method of providing thrust for a space vehicle

: and (2), if so, what can be said of desirable properties of the laser beam and the

ablation solid. The study concentrates on the laser-solid interaction itself and

no attempt is made to consider problems of beam generation and control. The report

! is divided Into two parts: the first is a brief description of the interaction

[,
based on a review of papers in the field, and the second deals with the questions

2

posed. Due to the many diverse problems of and approaches to the complicated

i process of interaction, it was felt that an overall look at this process is
>

necessary to set the proper stage for discussion of the intended application.

. t

2

f
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i II. REVIEW OF LASER-SOLID INTERACTION

A bibliography on laser-matter interaction is presented at the end of this

I report. Many of the references published in the last few years are given directly;

I those of earlier work in the field along with discussion are Biven in [9, 17, 26, 42],

In total there are several hundred available.papers

The interaction of a laser beam and a solid surface depends greatly on the
j •

beam intensity I and pulse time t . For Q-switched pulses of 30-50 nsec on metal
p '

, emission or surface damage is apparent for I _ 107 W/cm2 [9]. Even for long times

(such as that for free-running modes) low intensities (I give surface
105 W/cm 2)

melting only [38]. For vaporization to occur it is necessary that the heat

deposited by absorption reaches the specific heat of evaporation E before it canv

diffuse away. Assuming nearly complete absorption, this requires

I > I _ p Ev ^/_7_ where p is the density of the solid and K its thermal diffusi-v P

vity [2]. For a nominal pulse time of 1 scc, I _ 104 W/cm 2 for metals within onev

• order of magnitude. Materials with smaller diffusivities may have I one or twov

orders of magnitude smaller. (Also, melting latent heats and thresholds are one

to two orders of magnitude less.) With CW laser operation, t should be associated
P

' with the thermal equilibration time (size) of the material. It is readily seen

that for plasma and/or impulse generation, interest is in intensities described by

, units MW/cm 2 or greater. See [24]. A description of possible physical processes

at such intensities is given here, along with a review of work on interaction.

At lowest intensities and/or very short tlm_s after pulse initiation the beam

, impinges directly on the surface, being partially (in most cases to a large extent)

reflected and partially absorbed. For metals the classical formula for absorption

(characterized by the skin depth based on electrical conductivity) does not apply

at high frequencies; the process is quite complicated [9]. A simple exponential

Flux dene_y would be the more proper term.

2 JPL Technical Memorandum 33-578

1973013722-011



absorption law is used in [9,52]; this simplification is shown in [9] to have little

effect on results for times such that the thermal diffusion length is much greater

than an anomalous skin depth. (This means for metals times much greater than about

i one psec.) It is also assumed in [9,52] that the absorbed energy is immediately

thermalized; this is reasonable since the electronic relaxation time is small [9].

I For very high intensities, direct ionization o£ the material (tunnel effect) can
occur within a time of several wave periods [15,34,56]. A layer of ionized matter

I with the same (uniform) number density the solid forms - an overdense layer,
as

i.e., one where the plasma frequency is greater than the laser frequency. If the

pulse ends before expansion of this layer can take place (and if nonlinear absorp-

tion is negligible), then in essence it may be totally reflected [4,56].

* Assuming that significant initial absorption (with thermalization) does take

place, the short time behavior (before expansion of any vapor or plasma formed) of

the material is governed by any further heating and thermal diffusion. Since phase

transitions are taking place and since the vapor formed may partially or wholly

absorb the laser radiation due to excitation and ionization (direct or thermal

' with subsequent coupling of the laser fields with free electrons), the heating and

diffusion process takes place with multiphase effects. Diffusion in the limit of

an ionized (plasma) material is considered in [13,26,34]. This limit is used to

qualitatively descrtb_ the case of a high intensity ultrashort pulse that can pro-

duce direct ionization and/or rapid thermal ionization so that most of the medium

affected by thermal diffusion is an overdense plasma rather than a solid [34].

Heating o_ a plasma wlthout difi,:sion (at times shorter than a diffusion time) is

considered in [13,21]; classical colllsional absorption (inverse bremsstrahlung)

in an underdense medium is assumed. The results could be of interest in cases of

JPL TechnicalMemorandum 33-578 3
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sequi:ntial pulsing when a beam interacts with plasma formed by a prior pulse.

If the plasma optical depth is small, nearly uniform heating results along with

large reflection at the solid or overdense surface. A large optical depth can give

complete absorption in a heating wave that propagates toward the surface [13,21,54].

Surface heating and vaporization (low intensities, nearly transparent vapor, longer

I times with removal) with thermal diffusion of heat into the solid phase is

vapor

;_ considered in [9,52]. Evaporative surface cooling can lead to subsurface tez_,perature

'l maximums, superheating of underlying material and its subsequent vaporization giving

explosive removal of a solid surface layer [52].

As the (overdense) vapor forms at high intensities it will expand; the expan-

sion wave at sonic velocity will overtake the thermal diffusion wave at a time tf.

This is the time scale for which consideration of fluid dynamics becomes important.

If t > tf, then tf _ K (p/I) 2/3 using solid properties [2]. Considering diffusionP

• in the plasma limit gives a similar result except chat K is the electron thermal

diffusivity and is a function of the density and temperature (energy input). The

result for t > tf is tf _ const, x A7/2 I/p 2 see [26]. Here A is the mass numberp
7/2

of the material and the constant equals m where m are the electron and
p e,p

v_ee4_n^

proton masses, • the electron charge, and _nA the Coulomb logarithm. For tp < tf

... and usin_ the plasma

limit tf _, _'_. x A7/4 d_p/0 where the same constantt--Plapplies
D4]. The constant

solid diffusivlty gives smaller tf at hish intensities, vice versa for the plasma.
+

Inclusion of plasma ion heatln$ by electron-lon collislonal relaxation would give

furthar complications but not chanp the qualitative results [34]. It is seen

that the determination of tf for • Slvan situation requires solution of the laser

i 4 JPL Technical Memorandum 33-578
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heating-thermal diffusion problem unless the limiting cases discussed give similar

results. Typically for long pulses on metal, tf is in the nsec range for high

intensities (_I07 MW/cm 2) using the plasma limit. Fo_ ?tLtcrmediate intensities

(_I04-i05 MW/cm2), tf drops to the i-i0 psec range (either 'imlt). Pulse times much

greater than one nsec are "long" (tp > tf). It is also te r._.noted that for lower

I intensities (I _ 103 MW/cm 2) the metal vaporization time equals or exceeds tf and
immediate vapor removal takes place. It is only at high intensities (I _ 106 MW/cm 2)

_" that metals have significant static heating of a nonsolid phase.

, _ For many cases of interest, absorption and heating during the fluid dynamic

portion of the interaction are important. Possible absorption mechanisms for a vapor

: or plasma will be discussed later; the dynamics is treated here. Let _. denote aa

typical absorption length (inverse of the absorption coefficient), C the specific

heat capacity, and T the temperature of either a solid or vapor (plasma). The

heating time (that required to double the thermal energy) t h _ 0CT_ /I with co_-• a

plete absorption and the corresponding acoustic signal propagation time t s a= &a/Vs

where v is the acoustic velocity. If t << th, heatin_ is slow and fo" & smalls s a

the heating wave (which may be diffusive) is a small perturbation. Strong heatin S

(t s >> t h) on the other hand would induce shock propagation. The critical intensity

(t s _ t h) is lh n, OVsCT. See [13]. If an overdense plasma resides next to the solid

surface, then absorption takes place elsewhere and Ih for the solid should be compared

to the thermal heat flux at tha surface. Partial absorption in the vapor phase can

further complicate the task of trylnl_ to develop strong heating criteria for the

_ solid phase. Nevertheless, estimates of Ih for a solid are of interest. For metals, .,

Zh m, 0.05 to 0.5 GW/cu 2 for T-300°K. For total vapors Ih is roushly the sum at

T = 2000°K and vsrlas as T3/2. rormstlon of shocks in both vapor and solid phases

can be expected for intarmudlate or high intensity pulses.

3PL Technica_ Memorandum 33-578 5
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i At high intensities, an expanding underdense plasma forms. Absorption of the

laser beam occurs in a region near to where the plasma becomes overdense. Heat is

conducted from the absorption region to the solid phase. As the expansion first

starts, gradients are large and the absorption length 6 is small. Three regionsa

form: the solid phase, then a dense phase separated from the solid by a shock

I propagating inward (away from direction of laser incidence and absorption), andfinally the expanding plasma separated from the dense phase by a deflagration wave

I also propagating inward a1_dwhere the absorption takes place. A detailed study of

; the regions and of the deflsgration wave jump conditions and structure is given in

[25]. The dense phase has constant temperature and density, both higher than that

of the solid. The deflagration wave is weak in that the pressure drops by only a

factor of about two. However, the temperature rise and density drop can be two

orders of magnitude large. Temperature at the inner edge of the expansion region

12/3(next to the wave) varies as , see [25]. The deflagratlon wave thickness is
%

governed by the electron thermal conductivity, the wave being overdense with ab-

sorption at its outer edge only and the Prandtl number being very small. As tin_

increases, the continued expansion means gradients will fall and _ increase.a

At the onset of the wave, this means that t1:e absorption efficiency will increase v
t

v [25,54]; later the absorption will change to primarily a volume effect with a

secondary amount in a surface evaporation zone. The dynmic structure changes.

Self-similar Sam dynamic models as given in [2,5,23] should be valid for these

lonser tiros. See _Iso the discussion in [26]. The similarity solutions are

'Nlf-consistent' [5] in that the optical depth of the plasma layer Is constant and

of order unity. Any decrease in density beyond that at thl8 condition of optical

depth would result in sore laser beam penetrstlon to the solid eurface, IncresNd

i 6 3PL Technical Memorandum 33-5"78
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vaporlzat_on, and consequent increased plasma absorption and optical depth - the

process is self-regulating. As the plasma layer thickness increases to a di_enslon

like that of the interaction area on the surface, multldlmensional effects must be

I
considered C3]. (It is possible that for sharply focused beams a self-consistent

_, state does not form [5_.) Lateral spreading of the plas_i sives a drop in the

I vapor density and higher intensity at the surface__ A quasl-steady state vaporlza-lion process ensues in contrast to the similar plan_r case wherein the vaporlza:ion

,_ rate decre_.ses with time. The spreading also aliows the vapor to be accelerated to

hypersonic velocities. Details are given in [3], see _lso C5]. In C23_ the effects

of nonequilibrium ionization in self-consistent and luasi-s=eady state heating are

explored for intensities I _ 106 HNlcm 2. These longer time theories are sor_what

limited in that electronic heat conduction is not considered. Structure of the

vaporization process is not examined but instead synthesized as _n evaporation wave

with jump conditions corresponding to complete absorption of the beam. Nevertheless,

they are valuable in gi¢ing a qualitative view of fluid dynamic processes and in

some cases should also be quantitatively accurate. Another model problem of

similaz feature is that of ElO,11_ dealing with long time nonstationary wave effects;J

thiJ_ is briefly described next.

The model concerns the case of heating at intermediate to low intensities where

initially the vapor is essentially not ionized and hence poorly absorbing. Effects of

possible beam reflection at the evaporation wave and condensation during expansion

are considered. As time increases, the _nount of vapor also increases, pressure

gradients decrease, and the cooling effect of expansion decreases. Due to the
%

exponential dependence of ionization on teuperature, ionization of and absorption

by the vapor suddenly increases near the evaporation wave. The vapor heating a_jd

,
The optical depth of the plasma outside of the evaporation zon= remains of order
unity.

JPL Technical Memorandum 33-578 7
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attendant pressure rise leads to creation of a shock propagating outward. The

absorption length in the vapor becomes small as the ionization increases sharply;

i absorption takes place in a narrow region behind the shock and it becomes a

i detonation wave. Vaporization at the surface ceases (thermal conduction is

neglected). A plasma forms behind the detonation and the surface pressure drops.

As the wave emerges at the vapor-vacuum interface, a rarefaction-heating wave forms

I ., and travels inward, preceded by a shock wave. (Instead of a vacuum, a low pressure

1
:ransparent vapor may be present. In this ,ase a shock propagates ahead of the

expansion into this ambient vapor.) This is somewhat similar to the deflagration

structure discussed previously and to the heating-shock wave in [13]. Due to the

large internal energy of the plasma, the heating wave is much slower (relatively

weak) than the original evaporation wave. The preceding shock is reflected from

• the surface, raising its pressure, and eventually merges with the low density very

hot plasma. After this time, the pressure will start to drop again. The heating

• wave reaches the surface and vaporization resumes. The relatively cold vapors from

the (new) evaporation wave drive away the plasma. The entire process then repeats,

Several of these plasmas 'flares' can occur during a long pulse (several _sec) such

, as that from a free-running laser. Despite the rapid and wide surfoce pressure

variations in sucb a process, the impulse generated changes smoothly with pulse

time (total energy at constant intensity) [i0,ii]. The impulse shows qualitative

agreement with that found by self-similar theory but is somewhat larger. This is

,_ partly due to the fact that comparisons were made using nonslmilar results which

include the adiabatic regime of expansion after pulse termination. It is shown inm

[i0] that the characteristic time for flare initiation (beginning of vapor absorption)

i and for the pressure pulsations decreases with increasing intensity. It is also shown

that lateral spreading increases this time and that if the flare starts in the planar

8 JPL Technical Memorandum 53-578
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i stage before spreading, subsequent spreading will yield a quasi-steady vaporization

mode. For high enough intensities with very strong heating, the transparent vapori
i stage ceases to exist and the evaporation process is continuou_ rather than inter-mittent. The discussion of the preceding paragraph then holds. Further details

on wave parameters and generation for the recurrent flares are given in [i0].

I For long times after pulse termination, the dynamics of the vapor is that of

i a free expansion [44,48] Continued vaporization after the pulse with heat supplied

I by the vapor adjacen_ to the solid surface can make a major contribution to both
_ material yield and the impu_.e [48].

Results of experimental investigation of the distribution of ion emission over

i
! charge, energy, and solid angle at the Moscow Engineering Physics Institute are

given in [39,46,49,50]. Other measurements are given in [42]. The former deals

with the interaction of a neodynium glass laser with metals at t _ 15 nse¢ and
P

I _ 102 107 MW/cm 2. The pulse time is sufficient for establishment of quasi-

steady vaporization [50]. The latter reference uses a ruby laser on aluminum and

copper at t _ 30 nsec and I _ 105 MW/cm 2. Diameter of the area of interaction
p

at high intensities (both cases) is on the order of 10-2 cm and is about I0-I cm

for I < 104 IdW/cm2. The average directed kinetic energy of ions of charge Z is

. _ found to increase monotonically with Z at a weakly varying rate, The energy is

i nearly independent of the intensity. Emission tends to concentrate in the normal

' _ direction as Z increases, Typically the ion energy is of the order of i0-16 J/unlt

_i charge The effect of increasing intensity mainly is to increase the maximum

charge of the emitted ions, Single ionization only occurs for I _ 102 _/cm 2,

Z s 5 for I _ 05 _/cm 2, and Z _ 20 for I _ 107 _/cm 2. The total number of ions

produced with charge Z >> 1 is several orders of magnitude smaller than the number

JPL Technical Memorandum 33-578 9
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_ with charge Z _ i" the decrease is roughly exponential. Average charge is

i Z _ 2 to 3 for the higher intensities, These results are consistent with the

quasi-steady vaporization theory where equilibrium conditions are assumed for theplasma composition in the one dimensional absorbing region (at least for

I _ i06 MW/cm 2) and a nearly adiabatic expansion with recombination occurs in the

outer spreading region [39,46,_0]. The importance of recombination is pointed out

in [42,49,50]. Ions of la:ge charge (Z _ 7) tend to have frozen composition in the

expansion due to their large velocities [50]. Rate processes are considered

theoretically in [23] for I _ 106 MW/cm 2. The mechanism for producing such large

ion energies is that of a quasi-neutral collisionless expansion [1,42,50]. The

electrons receive energy from the laser beam and attain large velocities. They

have a tendency to expand quickly, but the heavy ions set up a restraining electric

field with the charge separation and slow down the electrons. The ions experience

an acceleration proportional to their charge. The energy transferred per electron

%

is small but the process is effectively repeated many times (the electrons fall

back) until the ion current (velocity) matches the electron current (velocity) in

the outer part of the expansion. It is to be noted that the ion yield may be a

small fraction of the total mass removal by the beam [42]. This can be explained

by recombination and especially by post pulse evaporation [48].

' Experiments at low intensity (I _ I01 - I03 MW/cm 2) indicate large liquid

yields [38,43]. This can be explained by crater formation with attendant gas

., dynamic blowing of surface liquid off the crater walls. Liquid drops can also form

• by condensation in the vapor and by vapor formation in superheated surface liquid,

giving another blow-off effect. See [24]. Droplets can act to shield the surface

from radiation. At high intensities of laser radiation, heating and vaporization

I0 JPL Technical Memorandum 33-578
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rates are sufficiently high so that droplet formation need not be considered. For

given energy, the total yield at first increases with intensity, then drops [9],

The change (for metals) occurs at I _ 103 - 104 MW/cm 2 [9,29]. The increasing yield

can be attributed to increasing vaporization (and melting) rates. When the stage

of vapor ionization is reached, the plasma absorbs the energy and shields the

surface, vaporization drops [9] and crater formation may not occur [29].Microscopic splinter formation has been observed after pulses of intensity

I _ i04 MW/cm 2 [35]. The hypothesis made to explain this is that of compressional

relaxation. The laser pulse forms a high pressure vapor at the surface and a

compression wave travels in the solid. When the pulse ends, surface pressure drops,

'_ and a rapid expansion of the compressed solid gives fracturing and explosive particle

removal. A surface pressure as large as i0II N/m2 (106 times standard atmospheric

pressure) is deduced in [51] from experimental measurements involving a beam of

roughly 105 MN/cm 2 intensity on a carbon target. This is as large as the elastic.

modulus of metals. At a low intensity of 300 MW/cm 2, a pressure of only the order

of 108 N/m 2 can be expected [ii]. Stresses are considered in [31,32,36,37].

Finally, this review of processes in laser-solid interaction will close with

a discussion on vapor or plasma absorption, While radiation emission from the

vapor is certainly measurable [17,20], it can usually be considered negligible

compared to the input energy of the beam [4,17,38,48]. Scattering of the beam is

_ also unimportant [4]. Thus absorption and reflection or refraction of the beam are

the important radiative effects. Efficient absorption may be expected upon plasma

i_ formation; this is brought out by experimental results [26,28,38,42,48,68].

Changes in the absorption by a vapor as intensity increases are described in [59]

and will be briefly given next. A cold vapor (without electronic excitation) is

transparent. A partially ionized vapor will exhibit an absorption coefficient

L Technical Memorandum 33-578 I I _
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independent of intensity at very low _ntensities. Absorption is by bound-free or

free-free electronic transitions (assuming no resonant bound-bound transition).

For radiation at optical frequencies, the former can occur only with h_tly

excited atoms, the binding energy of lower states being too large. If the heating

and absorption are very weak, the temperature and kinetics of the vapor are not

changed and neither is the absorption. As the intensity increases beyond a certain

value, increases in temperature and absorption promote ionization, especially of

the highly excited atoms for short times. A decrease in absorption can result since

the excited atoms absorb most of the light. As even stronger heating at larger

intensities takes place, excitation and ionization from the lower states become

:_ important and as a plasma forms strong absorption occurs.

Consider an electromagnetic wave propagating in a situation where travel is

from a transparent medium (such as a vacuum) to a plasma where the charge density

builds up from near zero to an eventual overdense condition (plasma frequency wP
%

greater than wave frequency w). The wave induces periodic charge motion

{ (essentially electronic) in the plasma, i.e., it becomes a plasma wave. The waveJ

group velocity decreases as the charge density increases until the critical density

(w = w ) is reached and reflection occurs. Absorption can take place by damping

_ the plasma wave directly or by transformation of the transverse wave into a longi-

tudinal wave with subsequent damping. In the former case collisions of the

oscillating electrons with ions can damp the wave and this is known as classical

_, collislonal absorption. It corresponds to absorption by free-free transitions

• i (inverse bremsstrahlung), taken in the high temperature limit where the thermal
%

energy greatly exceeds the photon energy [4]. This is the mechanlem of overriding

importance in many cases of gas dynamic interaction and is discussed in [53,54].

_ 12 JPL Technical Memorandum 33-578
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Let £d denote the characteristic electron density gradient length near the critical

density. Nearly complete collisional absorption requires £d > C_ei where c is the

velocity of light and 7ei is the electron-ion collision time based on critical

1 density This is simply a requirement that a collision (damping) takes place

[54].

in the time the light takes to travel through the underdense region that is near to

being overdense. (In the very underdense region, little of the wave energy iscarried by the electrons.)

I '
In a narrow density region near critical (_ _ _p), generation of longitudinal

plasma oscillations is possible by either a resonant coupling to the beam electric

field in a case of incidence at an angle to the density gradient [54,63,69] or a

coupling due to the presence of ion density fluctuations [53,54,55,66]. Maximum

coupling for inclined incidence results if the polarization (electric field vector)

is in the plane of incidence; the (driving) field component along the gradient

• direction is then for a given incidence angle greatest. Increasing the angle also

increases this component but gives reflection at lower densities (lower cop)

a deleterious effect for large angles. Optimum incidence angle 0 is about

0 _ (_d/C) -I/3 << 1 [63,69]. The velocity characteristic of the electron oscilla-

tE

. tlon in the plasma wave is ve = m co where E is the electric field amplitude.
e

The plasma is 'cold' if its electron thermal velocity is much less than re, 'hot'

:. if it is much greater. In a cold plasma, damping of the inclined incidence

longitudinal oscillations can be by collisions [63] or if the plasma is colllslonless,

by breaking of the plasma wave [693. As the temperature increases, Landau damping
t

can be expected to become important [54,63,69].

Efficient coupling through ion fluctuatio_-s requires that they be larger than

thermal, hence some form of instability is needed [54]. Such an instability requires

3PL Technical Memorandum 33-578 13
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a minimum (high) intensity for formation [54,55]. Many types of instabilities have

been postulated [54,55,66]; perhaps the most important are the modified two stream

[55,64] and parametric [54,55,64,66]. This anomalous absorption has not been veri-

fied experimentally [26].

A summary of the salient features of the processes of interaction is in order.

At the lowest intensities of interest, surface absorption, melting, and evaporation

with diffusion of heat into the solid phase are the important phenomena. The vapor

is effectively transparent and expands freely. The processes of beam absorption-

_ reflection and phase change at the surface are quite complex. Liquid blow-off may

_ occur. As the intensity increases with concomitant increase in the evaporation rate

and vapor temperature, the ionization-enhanced absorption threshold is obtainable

and a quasi-periodic system of wave 'discontinuities' may propagate in the vapor

phase. The vapor then absorbs much of the laser energy and becomes a plasma,

Further increase in the intensity gives plasma formation from the solid with much
%

or all of the absorption occurring in the expanding plasma after an initial short

i time. The interaction is then principally gas dynamic. Collisional damping of

plasma waves becomes a major absorption mechanism. Excitation and damping of

longitudinal oscillations can also be important in deflagration, detonation, or

_ evaporation waves. The initial static heating can be important for ultrashort

high intensity pulses. The dimension_l effect of lateral spreading results in a

' quasi-steady process for long times of gas dynamic interaction.

1973013722-023



III. POSSIBILITIES FOR SPACE PROPULSION

I It is seen from the review in the first part that a laser impinging on a solid

can produce ablation particles of high energy and large surface press, res. Utiliza-

i tion of this effect of impulse generation for a propulsion system is discussed here.

It is common to speak in terms of a 'coupling coefficient' which is the impulse per

unit energy for a given laser pulse. Experimental values for intermediate
_ intensities (104 - 105 MW/cm 2) are in the range i01 - 102 _N-sec/J [9,48,51].

i Experiments with free-running lasers at low intensities (102 - 103 MW/cm 2) give a

higher coefficient [43], even lower intensities [I] give a similar or lower

'_ coefficient. In [I] a systematic investigation of the use of various metals as anF
l- ablative materia_ for propulsion is reported. A maximum specific impulse of 660 sec

was determined. Relatively low ion energies were measured. The specific impulse

is about equal to 0.I _/_ where _ is the efficiency of conversion of the laser

• energy into directed kinetic energy (including absorption efficiency) and _ is the

coupling coefficient in N-sec/J. Since _ is potentially high [48], a specific

impulse of 103 to 104 sec appears feasible. This agrees with the ion energies

discussed in the first part. It is seen that the low intensity results correspond

to low conversion efflciencies _, particularly those of [I]. This can easily be

explained by large beam reflection and inefficient particle acceleration mechanisms

(surface vaporization and heating with free expansion and also liquid blow-off for

! [43]). Interaction in the quasi-steady gas dynar, c (plasma) mode provides
• i

I efficient absorption and also the related collisionless expansion produces large

ion energies. The ion energy and directionality increase with charge (intensity).

Provided that efficient abgorptlon is maintained, it seems reasonable to try to utilize

the highest intensity possible. Minimum intensity (ionization threshold) is about

i'
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104 MW/cm 2 for metals (see Sec.II). The threshold depends mostly on the ionization

potential and thus this minimum intensity should approximately hold for other

materials too. The best ablation material would probably be one of low potentials

for multiple ioni_ation. Time for establishment of the quasi-steady mode is

shortest for material of small mass number (Sec_II and [5]). This may be ofimportance at higher intensities, especially if the pulse energy is limited.

It is assumed that the laser beam is generated at a fixed station (earth, moon,

i or orbiter) and sent through space to the vehicle. The elimination of an on-board

"_ power supply is one of the main attractions of the present proposed application.

Assuming beam divergence in the diffraction limit [70], the intensity at the vehicle

Iveh in relation to the generation station intensity Io is Iveh _ lod4/(_2L2) where

d is the beam diameter at the station, k the wavelength, and L the distance traveled.

Taking d --1 m, X = 10-6 m, and L = 104 km, Iveh _ I0-21o" Laser energy transmission

is seen to be a valid procedure for near space application provided a high frequency
%

. (visible or UV light) is used to minimize divergence. The laser ablation thruster

must be compared to a laser absorption (solar) cell - power conditioner - ion engine

system [71]. Since the specific impulse is probably comparable, efficiency is an

important consideration. Complete collisional absorption requires that _d > CTei

where _ei "_ w'2T3/2 since '_2 ,_electron density. Efficient absorption is thus, p

favored by high frequencies. This is also true for inclined incidence absorption

(me4'd2 11/3
'li where the effective "collision time" is _'eff _ |"_I [54]. Zn the quasi-steady

vaporization mode, _d _ r where r characterizes the interaction area radius and

i plasma thickness. The requirement r > CTel is equivalent to the condition that the

electron density outside the evaporation zone be less than critical. The minimum

10-15 AI/2 _4 I where rml n is in cm, _ in _m,_ radius can be determined as rml n J.

and I in Wlcm2. Using A - l0 and I = 104 MW/cm2 rmi n J, .32 cm for X = I0 _m and, J
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rmi n _ 3.2 x 10-5 cm for _ = 1 _m (near infrared). For visible or UV light, r .mln

is very small even for high intensities. This means that complete absorption can

be expected. (It also implies that the density change across the evaporation wave

is large.) The overall need for high frequency is quite clear.

Assuming a pulse time equal to the time for establishment of the quasi-steady

mode [5] and using nominal values I = 104 MW/cm 2, A = i0 and r = 1 mm, the minimumpulse energy can be estimated. It is equal to about 6 J at I = I _m and scales as

I ' %-219 A7/Ig 2619 1719r . For the intended application, pulses with energy of several

thousand joules would be desirable.

The shape of the pulse with respect to time may have to be tailored to avoid

fragmentation by either subsurface superheating or compression relaxation.

To examine the possibilities of a laser ablation thruster a little further,

consider a laser producing lOOJ pulses at % = I _m and focused on the ablation

material with an intensity of 104 MW/cm 2 and spot radius I mm. The pulsing

i frequency is 105 sec -I and the space vehicle mass is 500 kg. Assume that the

thrust force during the pulse is given by quasl-steady theory [5], it scales as

, . /9z: 1 2/9 17 7/9r and produces a time average acceleration in this situation of

' approximately 0.2 m/sec 2. The time average power input is i0 MW. Note that
. p

this estimate of acceleration cannot be considered as being accurate in that

! post pulse evaporation and the possible effects of rapid pulsing are not con-

sidered. The actual acceleration may be near the value given above and could

_ possibly be considerably greater.

It can be concluded that it is reasonable to consider laser ablation for

4
near space propulsion. It is clear that fairly high intensity beams at high

frequencies are needed. The actual feasibility of such a system can only be

determined by a more detailed analysis and/or experimental studies. The latter

JlaL Technical Memorandum 33-578

17

1973013722-026



I

\

is not presently possible due to limitations of a_,ailable lasers with regard to

pulse energy and frequency. An attempt at analysis would involve difficulties

due to the complicated nature of the interaction and ignorance of some aspects

of the problem. For example, to model the structure of the evaporation zone, it

is necessary to know the thermodynamic a_d transport properties of high tempera-

ture multiphase mixtures and their absorption and reflection properties. Details

of such processes are not presently known [9,25]. Also, it cannot be said that

excitation, ionization and recombination rates are well known. Non-Maxwellian

velocity distributions (see [23,69]) introduce further difficulty. Analytical

i modeling without experimental verification of results _my be somewhat dangerous.

NOTE: A recent book on laser-matter interaction [72] came to the author's at-

tention after completion of this review and study. The book contains a compre-

hensive view of the process and is certainly recommended reading. However, the

most recent references are understandably not used and the discussion of gas

dynamic interaction and plasma abs ption is not thorough. Some of the conclu-

sions are at variance with the results presented here. The author feels the

present review to be more pertinent to the problem of laser ablation thrusters.

B

p

I
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